If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-15x-6=0
a = 30; b = -15; c = -6;
Δ = b2-4ac
Δ = -152-4·30·(-6)
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{105}}{2*30}=\frac{15-3\sqrt{105}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{105}}{2*30}=\frac{15+3\sqrt{105}}{60} $
| -2(2x+5)=-3 | | 2x-7=3x^2+4x | | 4(x+2)(x−2)=(2x)2+8x= | | c/3=4-6 | | 2x²-8x+15=0 | | 2x-70=x+10 | | 5(y-4)+2=2(y+2)-4 | | 2(2x+3)+3x+7=3(3x+1 | | 3(5-2x)=-6 | | 11^x=√(1331) | | y-13/7=14 | | 3=2g-3 | | 6^x-2+5=45 | | 5-5t+2t=-13 | | 6^x-5+5=45 | | x+1)2-(x-1)2=32 | | 4y=64y2 | | Q=3p-2 | | x=1/2*11*4 | | 36x^2-25x+1=0 | | -8x+6=-5x+12 | | 2+10x=12x | | 5m-2(2m-7)=2(3m-1)+7÷2 | | 2(4-3x)=7 | | x=(180-52)÷2 | | (3x/5x+2)=-4 | | x=180-52 | | 1/8+c=4/5 | | 1/2y+1/2=1/2 | | 3a=17-2 | | 4(2x-5)=4(x-5)+18 | | 4(5t+1)-11=t-(t+6) |